资料
当前位置: 电缆网 > 资料首页 > 技术文章
在传输线中常用一个称为电长度的参数(单位:MHZ)来衡量电缆的电气性能。工厂生产电缆时,因为制造工艺的关系,使得每一批的电缆的电气指标都存在着差别,比如同是一段物理长度一样的两条电缆,对同一个高频信号来说它反映的电性能就不一样,因此就引入了一个电长度的概念。它反映了在一段单位物理长度内,电缆对某一频率信号所表现出来的特性。在制作发射天线的馈电系统中,此项参数尤为重要。例如在我发表的“双层十字型发射天线的配接”一文中的各分馈电缆,在物理长度一样但电长度不一样的情况下,分馈线的实际阻抗就会产生偏移且会引起附加相移,使得整个天线系统难以做到很好的配接。那么如何去检测一段电缆的电长度呢?具体方法是这样的,例如发射天线工作的中心频率为F,其对应的波长为lambda;,截取一根物理长度为lambda;/2的电缆将它的终端短路,使它对信号形成全反射,用扫频仪进行测试,调节扫频仪输出的中心频率使扫频仪屏幕上产生一个下陷的波形(如图L所示),这个下陷波就是电缆的反射波形。从长线理论中我们知道,终端短路的传输线对于某一频率信号来说,离终端lambda;/2处,它的反射波电流幅值最大,所以此时图中的A点(即波峰处所对应的频率)就是这根电缆的电长度。如A点处的频标所指示的频率等于F,就说明此电缆的电气性能达标,如不等F,则说明电缆的电气性能存在着差异,如用此电缆作天线系统的分馈线时,就必须要对其(物理长度)进行修正。对于特性相同的电缆来说,当它的物理长度相同时,它们的电长度也相同;当它的特性不等时,电缆的物理长度相同而它们的电长度不相同,所以我们可以用电长度这个指标来衡量电缆性能的一致性。
拉丝张力主要受拉丝炉温控制,因此拉丝张力(F)可用拉丝温度(T)表示为:F=A+B/T (1)式中A和B分别为表面张力和粘滞流动常数。但是玻璃是一种近程有序、远程无序的无定形“过冷液体”。玻璃的粘度、离子扩散速度等一类性质,在高温熔体冷却过程中是逐渐变化的。在转变温度以下主要取决于玻璃网络结构和网络外离子的配位状态的统计规则。光纤以非常高的冷却速度(2000-8000℃/s)迅速从2000℃左右冷却至室温,使其高温结构迅速冻结。熔体在冷却过程中质点或原子团重新排列,玻璃结构也随外界条件而变化,这就是拉丝张力对光纤性能起重大作用的根本原因。拉丝张力与光纤衰减的平衡点由于拉丝张力的大小是通过拉丝炉温度来控制的,拉丝炉温度越高,玻璃软化程度越大,拉丝张力就越小。从图1中可以看出,对于1310nm窗口衰减,随着拉丝张力的增加,光纤的衰减会发生先降后升,呈抛物线形,而1550nm窗口处衰减在一点的拉丝张力范围内并没有随拉丝张力发生明显变化的现象。 这是由于在高温下,容易诱发石英玻璃内部点缺陷的形成,造成光纤衰减的增大。在高温下,石英内部容易发生下面的反应式(2):Si?O?Si+H2rarr;Si?O?H+H?O?Si (2)Si?O?H的吸收峰正是在1380nm附近,这会带动光纤在1310nm窗口处衰减一同增大。同时,拉丝过程是高温预制棒体积急剧变化的过程,预制棒在高温下经过拉伸,其本身的化学键可能被破坏,且光纤又经过迅速冷却降温,更容易造成光纤本身缺陷的增加和原有缺陷的发展,而这些缺陷会造成光纤瑞利散射衰减增大,温度差越大,这种破坏越强。而瑞利散射是与波长的四次方成反比的,所以在1550nm处衰减随温度的变化没有1310nm波长处明显。随着温度的降低,上述两种作用机制共同作用,使得光纤的衰减变小,但是随着温度的进一步降低,光纤所受的张力越来越大,材料的粘度分布将逐渐由均匀分布到不均匀分布。在此种条件下拉丝,会在石英材料中间形成不同程度的应力集中,这会抵消温度降低带来的光纤衰减减小的效果。如果进一步降低拉丝温度,光纤中应力集中占到更重要因素,使得光纤的衰减重新增加。单模光纤的两大重要性能截止波长和模场直径是单模光纤的两个极为重要的性能参数,拉丝张力是拉丝工艺中重要的控制参数之一。截止波长指的是, 单模光纤通常存在某一波长,当所传输的光波长超过该波长时,光纤只能传播一种模式基模的光,这一波长便称为截止波长。截止波长大小由光棒的结构参数,如光纤的芯径以及芯、包层间的相对折射率差△决定。模场直径,因为单模光纤中关能量并不是完全集中在纤芯中, 而是有相当部分的能量存在包层中,所以对单模光纤不宜用芯径作为其特征参数,而是用模场直径作为描述单模光纤中光能集中的范围,一般以光强分布最大值的1/e2所对应的光斑大小作为模场直径。拉丝张力为光纤成形区因石英粘度所产生的阻力与光纤涂覆时所受的阻力之和。拉丝张力是由加热炉工作温度和拉丝速度共同决定的。温度是光纤特性改变的关键截止波长的理论计算公式为:lambda;c=2pi;alpha;(n12-n22)1/2 / 2.405 (3)其中,alpha;为纤芯半径,n1为芯层折射率,n2为包层折射率。由公式可以看出,lambda;c由alpha;、n1 和n2 决定,通常alpha;和n2 在拉丝中是不会变化的。然后当加热炉的工作温度变化时,光纤纤芯的折射率n1也会随之改变。在拉丝生产中,通常根据拉丝张力来确定加热炉工作温度,从而改变纤芯折射率n1 的分布,使 n12-n22 在一定范围内变化,进而改变光纤截止波长和模场直径。为增大拉丝张力,加热炉功率减小,炉内温度降低,同时拉丝过程中,光棒芯层中的GeO2存在以下热分解平衡:GeO2=GeO+1/2O2 (4)当温度降低时,以上化学反应向左移动,造成GeO2的浓度增加,由于GeO2的折射率大于GeO的折射率,所以芯层折射率n1增大,由截止波长计算公式(3)可知芯层折射率n1增大,截止波长增大。同理,当拉丝张力减小时,加热炉内温度升高,以上分解反应向右移动,使GeO2的浓度减小,芯层折射率n1减小,故截止波长减小。通过以上分析可知,在拉丝过程中张力增大,必须使加热炉内温度降低,从而使得光棒芯层中存在的热分解化学反应向左移动,造成GeO2的浓度增大,由于的GeO2折射率大于GeO的折射率,所以芯层折射率n1增大,同时由于包层折射率n2在拉丝中是不变量,所以芯层、包层折射率差Delta;n=n1-n2增大,因此折射至包层汇总的光能量减少,集中在纤芯中的光能量增强,纤芯中心所对应的光强最大值增大,即光斑的大小mdash;模场直径减小。反之,升高拉丝炉温使得拉丝张力减小,上面的反应式向右方向移动,芯层折射率就会变小,相对折射率差也变小,折射到包层中的光能量会增加,这样模场直径就会变大。
目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。工作温度FTLD为-40~200℃,CTTC为-40~899℃。分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。
20世纪60年代末的研究发现:如果选择合适的正弦或脉冲放电测试电压,无论是将被测产品浸没在水中还是在被测导体和水之间加上60Hz的高压都能够得到同样的结果。这种脉冲放电测试方法随后被国家电子产品协会(NEMA)采纳,并且替代了在水中浸没测试方法。随后绝缘电缆的军用规范中也包括了这种测试方法。这种检测方法就是火花试验。在线绝缘检测的方法和设备有很多,以前通常是使用浸水电压试验,但是这种试验在时间和环境方面要求特别严格,而且所用场地大、工序繁多,所以它无形中限制了电线的生产检测速度,不符合现代化生产的需要。火花耐电压试验的工作原理是产品的导电线芯接地,产品以一定速度经过高压电极,使绝缘层承受高压试验。高压电极有接触型(电极与产品绝缘表面接触)和非接触型两种,目前大部分都采用接触型电极(珠链形或刷形)。当产品通过高压电极时,绝缘表面一方面与密集分布的电极相接触;另一方面电极占有部分空间的空气被高压所游离。当电极电压达到一定数值(几千伏以上)时,可以近似认为,产品绝缘表面的空气电压即为电极电压,因此,电极及周围的游离空气相当于组成了被产品的一个外电极。根据目前所选用的火花耐电压试验值,在长期的生产实践中证明,基本上能达到与浸水耐电压试验的相同效果。火花耐电压试验是一种快速和连续进行的耐电压试验方法,主要用与对橡皮、塑料绝缘电线,或者对有护套的电线电缆产品的橡皮、塑料绝缘线芯进行耐电压试验,一般适用于1000V及以下电压级的产品。由于设备简单,速度快,在制造厂中被大量采用。
一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Omega;的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Omega;的故障,可采用加高电压烧穿的方法使电阻降至1Omega;以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出arsquo;和brsquo;芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为arsquo;相和brsquo;相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将brsquo;与Crsquo;短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。 3、电容电流测定法电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1~2kVA单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。 测量步骤: (1)首先在电缆首端分别测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。 (2)在电缆的末端再测量每相芯线的电容电流Iarsquo;、Ibrsquo;、Icrsquo;的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。 (3)根据电容量计算公式C=1/2pi;fU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长L,芯线断线点距离为x,则Ia/Ic=L/x,x=(Ic/Ia)L。测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。 4、零电位法零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端接了电源。此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零。反之,电位差为零的两点必然是对应点,因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导电上移动至示值为零时的点与故障点等电位,即故障点的对应点。图5中K为单相闸刀开关,E为6V蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下: (1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。 (2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。 (3)合上闸刀开关K,将软导线的断头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。
铜芯电缆比铝芯电缆优势:1. 电阻率低:铝芯电缆的电阻率比铜芯电缆约高1.68倍。2. 延展性好:铜合金的延展率为20~40%,电工用铜的延展率在30%以上,而铝合金仅为18%。3. 强度高:常温下的允许应力,铜比铝分别高出7~28%。特别是高温下的应力,两者相差更是甚远。4. 抗疲劳:铝材反复折弯易断裂,铜则不易。弹性指标方面,铜也比铝高约1.7~ 1.8倍。5.稳定性好,耐腐蚀:铜芯抗氧化,耐腐蚀,而铝芯容易受氧化和腐蚀。6.载流量大:由于电阻率低,同截面的铜芯电缆要比铝芯电缆允许的载流量(能够通过的最大电流)高30%左右7.电压损失低:由于铜芯电缆的电阻率低,在同截面流过相同电流的情况下。铜芯电缆的电压降小。因此,同样的输电距离,能保证较高的电压质量;或者说,在允许的电压降条件下,铜芯电缆输电能达到较远的距离,即供电覆盖面积大,有利于网络的规划,减少供电点的设置数量。8.发热温度低:在同样的电流下,同截面的铜芯电缆的发热量比铝芯电缆小得多,使得运行更安全。9.能耗低:由于铜的电阻率低,相比铝电缆而言,铜电缆的电能损耗低,这是显而易见的。这有利于提高发电利用率和保护环境。10.抗氧化,耐腐蚀:铜芯电缆的连接头性能稳定,不会由于氧化而发生事故。铝芯电缆的接头不稳定时常会由于氧化使接触电阻增大,发热而发生事故。因此,事故率比铜芯电缆大得多。11.施工方便:①铜芯柔性好,允许的弯度半径小,所以拐弯方便,穿管容易;②铜芯抗疲劳、反复折弯不易断裂,所以接线方便;③于铜芯的机械强度高,能承受较大的机械拉力,给施工敷设带来很大便利,也为机械化施工创造了条件。铝芯电缆的优势:1.价格便宜:铜杆是铝杆价格的3.5倍、铜的比重又是铝的3.3倍,所以铝芯电缆比铜芯电缆便宜多的多,适合于低资工程或临时用电。2. 电缆很轻:铝芯电缆的重量是铜芯电缆的40%,施工运输都成本低。3.抗氧化,耐腐蚀:铝在空气中与氧反应很快生成一种氧化膜,能防止进一步氧化,所以铝导线是高电压、大截面、大跨度架空输电的必选材料。尽管铝芯电缆和便宜,但是铜电缆在电缆供电中,特别是地下电缆供电领域,具有突出的优势。地下使用铜芯电缆供电具有事故率低、耐腐蚀、可靠性高、施工维护方便等特点。这也是国内目前在地下电缆供电中主要采用铜电缆的原因所在。
在回顾网络的发展过程后,我们都会感到网络的发展日新月异,几乎每过几年网络的应用就产生了更新和升级,而网络应用的不断发展则又向人们提出更高带宽等相关性能的要求,随着千兆和万兆网络的普及应用,在我们传统布线系统中,铜缆系统目前似乎只能用在终端用户部分了。 面对需求不断提升的情形,光纤类布线产品已经变为网络布线设计的不可缺少的一部分,被广泛的应用在布线网络中,这是都是因为光纤具有铜缆产品无法比拟的优点,目前光纤系统不仅已经普遍应用在主干布线系统中,而且也进入了水平和桌面应用。在布线系统中,传输介质就如同交通网络中的公路或桥梁,所有的网络安全运行、各部分之间的信息相互传递的正确性必须建立在布线系统的安全、稳定、可靠的基础上,这是至关重要的,如果网络布线组成部分的可靠性产生了不确定,那么在此基础上的网络运行安全就变的更加无法预测和保证。因此,网络安全运行的最基本条件就是要保证传输介质的安全、可靠和有效,必须要做到网络布线连接组件的高度安全稳定和组件之间的良好匹配性,尽可能的降低信号的损耗,以及提供足够的传输容量来支持今天和明天的应用需求。由于铜缆网络中传输的信号是电信号,而光纤网络中传输的信号是光信号,所以在考察不同网络介质的性能时,有很多参数指标是不同的,但是,无论电信号还是光信号,插入损耗、回波损耗、噪声干扰等都是影响网络性能的主要因素,当然还包括由于各连接件之间的失配所造成的网络性能下降也归属在上述几种因素中。在这里,我们仅对光纤网络进行一下讨论。 在目前通用的光纤布线网络中,由于布线使用的光纤的工艺和品质普遍比较稳定,所以由光纤构成的光缆和各类光纤连接器、跳线、尾纤等组件的特性多数是比较稳定的,并且在布线实际使用过程中,他们是相对比较固定的,因此实际可能会影响到光纤网络稳定的多数原因都集中在光纤的连接技术上,下面,我们对目前较为常用的光纤连接技术进行分析和讨论: 1、熔接方式:光纤熔接是目前较多采用的一种连接方式,相对而言,熔接是成功率和连接质量较高的方式,但是同时也应该注意到的是,熔接后的接头是比较容易受损或发生故障的主要因素之一,由于在使用和维护过程中,对设备的维护操作是必须的,因此它的安全性是我们必须考虑的问题。在通常的情况下,熔接可以得到较小的连接损耗,一般在0.2dB以下,但是回波损耗是不容易控制的,同时在光纤熔接过程中,影响熔接质量的外界因素很多,如环境条件(包括温度、风力、灰尘等)、操作的熟练程度(包括光纤端面的制备、电极棒的老化程度)、光纤的匹配性(包括光纤、尾纤类型匹配、光纤厂商匹配)等,如果采用目前国内还使用不多的MTP等多芯带状光纤连接器,带状光纤熔接机则更无法避免熔接过程中出现的个别光纤损耗过大的现实;而且,经验告诉我们,熔接的真实损耗值必须通过测试才能得出,在光纤芯数较多的情况下,很容易损伤已经完成的,在测试阶段,如果测试结果不理想或不达标,要重新将其挑选出再进行返工;在网络已经使用后,如果发生网络机柜或终端需要移动位置时,必须中断光纤链路,在新的位置上重新熔接等等;所有以上种种可能的出现,都让我们在熔接时付出很多的劳动和加倍小心光纤的安全。 2、冷接或现场磨接光纤连接器的方式:凡是从事过工厂制造和生产光纤产品的同仁对此应十分了解,现场研磨与工厂生产制造是两种无法比拟的完全不同的方式,工厂采用的是专用研磨机器的由粗到精的五道研磨工艺,现场是无法调整压力、无法保持一致的手工研磨。
如何在众多选择中寻找到最佳的测试电缆?时代微波系统在此向您介绍一种专为生产测试及实验室应用而设计的理想之选 mdash; SilverLine测试电缆。
良好的视频传输设计是视频监控系统中非常重要的一部分。如果一套建设好的系统选用的都是能够产生或处理高质量画面的摄像机、镜头、监视器、录像机,但是没有良好的传输系统,最终在监视器上看到的图像将无法令人满意。根据“木桶法则”,最终的图像质量将取决于整个系统中最差的一环;而这最差的一环往往就是传输系统。系统的设计人员和安装人员必须根据实际需要选择合适的传输方式、高质量的传输线缆和设备、并按专业标准进行安装,才能达到理想的传输效果。 视频信号传输一般采用直接调制技术、以基带频率(约8MHz带宽)的形式,最常用的传输介质是同轴电缆。同轴电缆是专门设计用来传输视频信号的,其频率损失、图像失真、图像衰减的幅度都比较小,能很好的完成传送视频信号的任务。一般采用专用的SYV75欧姆系列同轴电缆,常用型号为SYV75-5(它对视频信号的无中继传输距离一般为300-500m);距离较远时,需采用SYV75-7、SYV75-9甚至SYV75-12的同轴电缆(在实际工程中,粗缆的无中继传输距离可达1km以上);也有通过增加视频放大器以增强视频的亮度、色度和同步信号,但线路中干扰信号也会被放大,所以回路中不能串接太多视频放大器,否则会出现饱和现像,导致图像的失真;距离更远的采用光纤传输方式,光纤传输具有衰减小、频带宽、不受电磁波干扰、重量轻、保密性好等一系列优点,主要用于国家及省市级的主干通讯网络、有线电视网络及高速宽带计算机网络。而在闭路电视监控系统中,光纤传输也已成为长距离视音频及控制信号传输的首选方式。 视频信号也可以用双绞线传输,这要用到双绞线传输设备。在某些特殊应用场合,双绞线传输设备是必不可少的。如,当建筑物内已经按综合布线标准敷设了大量的双绞线(标准中称三类线或五类线)并且在各相关房间内留有相应的信息接口(RJ45或RJ11),则新增闭路电视监控设备时就不需再布线,视音频信号及控制信号都可通过双绞线来传输,其中视频信号的传输就要用到双绞线传输设备。另外对已经敷设了双绞线(或两芯护套线)而需将前端摄像机的图像传到中控室设备的应用场合,也需用到双绞线传输设备。双绞线视频传输设备的功能就是在前端将适合非平衡传输(即适合75Omega;同轴电缆传输)的视频信号转换为适合平衡传输(即适合双绞线传输)的视频信号;在接收端则进行与前端相反的处理,将通过双绞线传来的视频信号重新转换为非平衡的视频信号。双绞线传输设备本身具有视频放大作用,因而也适合长距离的信号传输。对以上不同的传输方式,所使用的传输部件及传输线路都有较大的不同。 通信线缆一般用在配置有电动云台、电动镜头的摄像装置,在使用时需在现场安装遥控解码器。现场解码器与控制中心的视频矩阵切换主机之间的通信传输线缆,一般采用2芯屏蔽通信电缆(RVVP)或3类双绞线UTP,每芯截面积为0.3mm2~0.5mm2。选择通信电缆的基本原则是距离越长,线径越大。例如:RS-485通信规定的基本通信距离是1200m,但在实际工程中选用RVV2-1.5的护套线可以将通信长度扩展到2000m以上。当通信距离过长时,需使用RS-485通信中继器。 控制电缆通常指的是用于控制云台及电动可变镜头的多芯电缆,它一端连接于控制器或解码器的云台、电动镜头控制接线端,另一端则直接接到云台、电动镜头的相应端子上。由于控制电缆提供的是直流或交流电压,而且一般距离很短(有时还不到1m),基本上不存在干扰问题,因此不需要使用屏蔽线。常用的控制电缆大多采用6芯或10芯电缆,如RVV6-0.2、RVV10-0.12等。其中6芯电缆分别接于云台的上、下、左、右、自动、公共6个接线端,10芯电缆除了接云台的6个接线端外还包括电动镜头的变倍、聚焦、光圈、公共4个端子。在闭路电视监控系统中,从解码器到云台及镜头之间的控制电缆由于距离比较短一般不作特别要求;而由中控室的控制器到云台及电动镜头的距离少则几十米,多则几百米,对控制电缆就需要有一定的要求,即线径要粗,如选用RVV10-0.5、RVV10-0.75等。 声音监听线缆一般采用4芯屏蔽通信电缆(RVVP)或3类双绞线UTP,每芯截面积为0.5mm2。在没有干扰的环境下,也可选为非屏蔽双绞线,如在综合布线中常用的5类双绞线(4对8芯);由于监控系统中监听头的音频信号传到中控室是采用的点对点布线方式,用高压小电流传输,因此采用非屏蔽的2芯电缆即可,如RVV2-0.5等。
引言 电缆是通信、测试等系统信号传输的重要载体,随着电缆数量的增多及运行时间的延长,电缆也越来越频繁地发生故障。电缆线路的隐蔽性及测试设备的局限性,使电缆故障的查找非常困难。本文设计了一种以嵌入式微处理器Nios为核心的电缆故障检测仪,应用A/D器件和FPGA组成可变频率的高速数据采集系统,利用低压脉冲反射法原理来实现线缆的断路、短路、断路点、短路点的检测与定位。该仪器可广泛应用于通信维护、工程施工和综合布线,对市话电缆、同轴电缆等各种线缆进行测试和障碍维护。1 系统总体结构 利用低压脉冲反射法检测电缆故障。主要原理是:向电缆发送一个电压脉冲,当发射脉冲在传输线上遇到故障时,由于故障点阻抗不匹配,产生反向脉冲,通过计算二者的时间差△T,并分析反射脉冲的特性来进行故障的定性与定位。该方法适用于断线、接触不良、低电阻或短路故障的测试。 故障点距离L为:L=Vmiddot;△T/2。式中,V是脉冲在电缆中的传播速度。根据反向脉冲的极性可判断故障性质:断线或接触不良引起的反向脉冲为正,低电阻或短路故障引起的反向脉冲为负。 该仪器是一个便携式电缆故障检测设备,可利用现代电子技术(如高速A/D技术、异步FIFO技术、现场可编程逻辑阵列FPGA等)来提高集成度和灵活性。系统总体结构如图1所示。
发热电缆的冷热线接头、防水绝缘护套、屏蔽层和生产原料,是评定发热电缆质量的几大大关键点,特别是接头和护套直接影响到发热电缆的使用寿命和安全性,生产原料更是关键中的关键;防水绝缘护套:发热电缆采用交联聚乙烯内绝缘层和PVC外护套,耐高压,耐高温,耐穿透,抗强化学腐蚀,安全可靠,100%防水渗透,抗拉抗压强度适合各种环境的安装使用,保证绝缘层的连续和使用的安全。斯伟达发热电缆每根都经过3000v高压检测,远远高于IEC800检测中2000V的标准,抗变形应力1400N超过IEC800的120N标准,达到欧洲高标准;冷热线接头:采用了欧洲隐式接头技术,发热电缆内部热线与冷线直接熔焊相连,外层的PE绝缘层、铝箔铠装屏蔽层、漏电保护镀锡铜丝、PVC外护套,都是通过流水线一次成型,一次生产出高质量成品,无需再进行人工拼接;目前国内外众多品牌的发热电缆,冷热线接头采用人工拼接或点焊,外层采用热缩管封闭,生产工艺落后,隐患及故障较多,且明式接头直径过大(约10-20mm)不便于施工铺设;相比之下,隐式接头无论从防水还是电气安全上,更提高了产品的可靠性及安全性。目前世界一流的隐式拼接技术保证了发热电缆的产品质量,使产品的故障率几乎为零。铠装屏蔽层:发热电缆在内绝缘层之外再加一层铝箔屏蔽层,大大增加机械强度提高抗拉抗压强度,有效的增强了发热电缆的使用寿命。此铠装技术100%防水,抗拉,抗压,可以使用在卫生间,房间,地下室等各种环境。金属屏蔽层反电势低,对环境几乎没有影响,隔绝电磁辐射,远远优于国家标准;8根镀锡铜丝与金属屏蔽连续接触,镀锡保证地线与铝屏蔽及接线端子耐久性的接触,大大提高了安全性;生产原料:在生产原材料上严格控制把关,PE绝缘层、铝箔铠装屏蔽层、漏电保护镀锡铜丝、PVC外护套等选用的生产材料均要达到欧洲ROHS的环保要求,不含六种重金属有毒元素,耐火能力强,燃烧或高温不会释放烟雾以及有毒气体,是真正的绿色环保产品。合金发热丝:铜、镍、铬合金被证明是最好的发热电缆材料;单根的合金丝能承受的温度最高为2000度;温度对热阻的影响小;保持恒定输出,寿命长达50年以上;生产及检测设备:配置产品检测设备,确保无不合格产品出厂。激光探伤仪能精确判断故障点,为施工维修作出有力保障。
基本结构
一、交联电缆接头运行状况6-10KV高压动力电缆在水利工程和电力系统运用非常广泛,其完好的接头和附件对机电设备安全、经济、可靠运行和供电安全是非常重要的。设计良好、施工合理的电缆接头,经实际运行证明,在大多数情况下是可以长期使用的。但交联电缆由于载流能力强,电流密度大,对导体连接质量要求就更为严格。对接头所要求机械的电气的条件日益从严越来越高,特别是6-10KV电动机电缆,各种接头将经受很大的热应力和较高激烈程度与持续时间的短路电流的影响。所以说交联电缆附件也不是附属的,更不是次要的部件,它与电缆是同等重要,必不可少的部件,也是与安全运行密切相关的关键产品。交联电缆在国外已普遍应用,国内广泛采用虽然仅10余年,目前还存在一些问题,但随着技术的发展,附件的配套,质量的提高,工艺的完善,交联电缆已有替代油纸电缆的趋势具有广阔、深远的发展前景。二、交联电缆接头故障原因分析由于电缆附件种类、形式、规格较多;质量参差不齐;施工人员技术水平高低不等;电缆接头运行方式和条件各异,致使交联电缆接头发生故障的原因各不相同。由于交联电缆与油纸电缆的介质不同,接头发生故障的原因有很大的差异,油纸电缆接头发生故障主要是绝缘影响,而交联电缆接头发生故障主要是导体连接。交联电缆允许运行温度高,对电缆接头就提出了更高的要求,使接头发热问题就显得更为突出。接触电阻过大、温升加快、发热大于散热促使接头的氧化膜加厚,又使接触电阻更大,温升更快。如此恶性循环,使接头的绝缘层破坏,形成相间短路,引起爆炸烧毁。造成接触电阻增大的原因有以下几点。1、工艺不佳。主要是指电缆接头施工人员在导体连接前后的施工工艺。(1)连接金具接触面处理不佳。无论是接线端子或连接管,由于生产或保管的条件影响,管体内壁常有杂质、毛刺和氧化层存在,这是不为人们重视的缺陷,但对导体连接质量的影响,颇为严重。特别是铝表面极易生成一层坚硬而又绝缘的氧化铝薄膜,使铝导体的连接要比铜导体的连接增加不少麻烦,工艺技术的严格性也要高得多。造成连接(压接、焊接和机械连接)发热的主要原因,除机具、材料性能因素外,关键是工艺技术和责任心。施工人员不了解连接机理,没有严格按工艺要求操作,就会造成连接处达不到电气和机械强度。运行证明当压接金具与导线的接触表面愈清洁,在接头温度升高时,所产生的氧化膜就愈薄,接触电阻就愈小。(2)导体损伤。交联绝缘层强度较大剥切困难,环切时施工人员用电工刀左划右切,有时干脆用钢锯环切深痕,往往掌握不好而使导线损伤。剥切完毕虽然不很严重,但在线芯弯曲和压接蠕动时,会造成受伤处导体损伤加剧或断裂,压接完毕不易发现,因截面减小而引起发热严重。(3)导体连接时线芯不到位。导体连接时绝缘剥切长度要求压接金具孔深加5mm,但因产品孔深不标准,易造成剥切长度不够,或因压接时串位使导线端部形成空隙,仅靠金具壁厚导通,致使接触电阻增大,发热量增加。2、压力不够。现今有关资料在制作接头工艺及标准图中只提到电缆连接时每端的压坑数量,而没有详述压接面积和压接深度。施工人员按要求压够压坑数量,效果如何无法确定。不论是哪种形式的压力连接,接头电阻主要是接触电阻,而接触电阻的大小与接触力的大小和实际接触面积的多少有关,与使用压接工具的出力吨位有关。造成导体连接压力不够的主要原因有以下3点。(1)压接机具压力不足。近年压接机具生产厂家较多,管理混乱,没有统一的标准,特别是近年生产的机械压钳,压坑不仅窄小,而且压接到位后上下压模不能吻合;还有一些厂家购买或生产国外类型压钳,由于执行的是国外标准,与国产导线标称截面不适应,压接质量难保证。(2)连接金具空隙大。现在交联电缆接头多数单位使用的连接金具,还是油纸电缆按扇型导线生产的端子和压接管。从理论上讲圆型和扇型线芯的有效截面是一样的,但从运行实际比较,二者的压接效果相差甚大。由于交联电缆导体是紧绞的圆型线芯,与常用的金具内径有较大的空隙压接后达不到足够的压缩力。接触电阻与施加压力成反比,因此将导致增大。(3)假冒伪劣产品质量差。假冒伪劣金具不仅材质不纯,外观粗糙,压后易出现裂纹,而且规格不准,有效截面与正品相差很大,根本达不到压接质量要求,在正常情况下运行发热严重,负荷稍有波动必然发生故障。3、截面不足将交联电缆与油纸电缆的允许载流量,在环境温度为25℃时,进行比较得出的结论是:ZQ2mdash;3times;240油纸铜芯电缆可用YJV22-3times;150交联铜芯电缆替代。因为YJV22-3times;150交联电缆的允许载流量为476A;而ZQ2-3times;240油纸电缆的允许载流量为420A,还超出56A。ZLQ2-3times;240可用YJLV22-31times;50替代,因为交联3times;150铝芯电缆的载流量为364A,而油纸3times;240铝芯电缆的载流量才320A,交联电缆还超出44A。如果用允许载流量计算,150mm2交联电缆与240mm2油纸电缆基本相同,或者说150mm2交联电缆应用240mm2的金具连接才能正常运行。由此可见连接金具截面不足将是交联电缆接头发热严重的一个重要原因。4、散热不好。绕包式接头和各种浇铸式接头,不仅绕包绝缘较电缆交联绝缘层为厚,而且外壳内还注有混合物,就是最小型式的热缩接头,其绝缘和保护层还比电缆本体增加一倍多。这样无论何种型式的接头均存在散热难度。现行各种接头的绝缘材料耐热性能较差,J-20橡胶自粘带正常工作温度不超过75℃;J-30也才达90℃;热缩材料的使用条件为-50~100℃。当电缆在正常负荷运行时,接头内部的温度可达100℃,当电缆满负荷时,电缆芯线温度达到90℃,接头温度会达140℃左右,当温度再升高时,接头处的氧化膜加厚,接触电阻随之加大,在一定通电时间的作用下,接头的绝缘材料碳化为非绝缘物,导致故障发生。综上所述增加连接金具接点的压力、降低运行温度、清洁连接金属材料的表面、改进连接金具的结构尺寸、选用优质标准的附件、严格施工工艺是降低接触电阻的几个关键因素。三、提高交联电缆接头质量的对策由于交联电缆接头所处的环境和运行方式不同,所连接的电气设备及位置不同,电缆附件在材质,结构及安装工艺方面有很大的选择余地,但各类附件所具备的基本性能是一致的,所以应加强以下几点措施来提高接头质量。(1)必须选用技术先进、工艺成熟、质量可靠、能适应所使用的环境和条件的电缆附件。对假冒伪劣产品必须坚决抵制,对新技术、新工艺、新产品应重点试验,不断总结提高,逐年逐步推广应用。(2)采用材质优良、规格、截面符合要求,能安全可靠运行的连接金具。对于接线端子,应尽可能选用堵油型,因为这种端子一般截面较大,能减小发热,而且还能有效的解决防潮密封。连接管应采用紫铜棒或1#铝车制加工,规格尺寸应同交联电缆线芯直径配合为好。近年长沙和沈阳电缆厂附件厂提供的交联电缆接头用压接管,使用效果较好。(3)选用压接吨位大、模具吻合好,压坑面积足,压接效果能满足技术要求的压接机具。做好压接前的界面处理,并涂敷导电膏。(4)培训技术有素、工艺熟练、工作认真负责,能胜任电缆施工安装和运行维护的电缆技工。提高施工人员对交联电缆的认识,增强对交联电缆附件特性的了解,研究技术,改进工艺,制定施工规范,加强质量控制,保证安全运行。由于交联电缆推广应用时间较短,电缆附件品种杂乱,施工人员技术水平高低不等,加之接头的接触力和实际接触面积是随着接头在运行中所处的各种不同的运行条件而在变化,所以交联电缆各种接头发生故障的原因也就各不相同,除发热问题外,对于密封问题、应力问题、联接问题、接地问题等引起的接头故障也应予以重视。
自上世纪80年代以来,电力传输技术的发展步伐明显加快,提高传输能力的办法不断涌现,既有直流输电技术、柔性交流输电技术、分频输电技术等高新技术,同时也有对现有高压交流输电线路的增容改造技术,如升压改造、复导增容改造、交流输电线路改为直流输电技术等。直流输电,对于提高现有传输系统的传输能力,挖掘现有设备潜力,具有十分重要的现实意义,实施起来可收到事半功倍的效果。经济性 三大特性突出节能效果从经济方面看,直流输电有以下三个主要优点:首先,线路造价低,节省电缆费用。直流输电只需两根导线,采用大地或海水作回路只用一根导线,能够节省大量线路投资,因此电缆费用省得多。其次,运行电能损耗小,传输节能效果显著。直流输电导线根数少,电阻发热损耗小,没有感抗和容抗的无功损耗,且传输功率的增加使单位损耗降低,大大提高了电力传输中的节能效果。最后,线路走廊窄,征地费省。以同级500千伏电压为例,直流线路走廊宽仅40米,对于数百千米或数千千米的输电线路来说,其节约的土地量是很可观的。除了经济性,直流输电的技术性也可圈可点。直流输电调节速度快,运行可靠。在正常情况下能保证稳定输出,在事故情况下可实现紧急支援,因为直流输电可通过可控硅换流器快速调整功率、实现潮流翻转。此外,直流输电线路无电容充电电流,直流线路无电容充电电流,电压分布平稳,负载大小不发生电压异常不需并联电抗。提升空间 大功率电力电子器件将改善直流输电性能直流输电最核心的技术集中于换流站设备,换流站实现了直流输电工程中直流和交流相互能量转换,除在交流场具有交流变电站相同的设备外,还有以下特有设备:换流阀、控制保护系统、换流变压器、交流滤波器和无功补偿设备、直流滤波器、平波电抗器以及直流场设备,而换流阀是换流站中的核心设备,其主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀。晶闸管用于高压直流输电已有很长的历史。近10多年来,可关断的晶闸管、绝缘门极双极性三极管等大功率电子器件的开断能力不断提高,新的大功率电力电子器件的研究开发和应用,将进一步改善新一代的直流输电性能、大幅度简化设备、减少换流站的占地、降低造价。【 观点 】远距离输电优势明显发电厂发出的交流电通过换流阀变成直流电,然后通过直流输电线路送至受电端再变成交流电,注入受端交流电网。业内专家一致认为。高压直流输电具有线路输电能力强、损耗小、两侧交流系统不需同步运行、发生故障时对电网造成的损失小等优点,特别适合用于长距离点对点大功率输电。其中,轻型直流输电系统采用可关断的晶闸管、绝缘门极双极性三极管等可关断的器件组成换流器,使中型的直流输电工程在较短输送距离也具有竞争力。此外,可关断器件组成的换流器,还可用于向海上石油平台、海岛等孤立小系统供电,未来还可用于城市配电系统,接入燃料电池、光伏发电等分布式电源。轻型直流输电系统更有助于解决清洁能源上网稳定性问题。【 工程应用 】1.plusmn;660千伏宁东mdash;山东直流输电工程于2011年2月28日投运,山东接受外送电力的能力由350万千瓦提升至750万千瓦。据统计,山东因此每年可节约原煤1120万吨。由此全省减少二氧化硫排放5.7万吨,二氧化硫排放量降低1.1个百分点,大大促进了资源节约型、环境友好型社会建设。仅2011年第一季度,山东电网就接纳省外来电91.3亿千瓦时,同比增长176%。2.锦屏mdash;苏南plusmn;800千伏特高压直流输电工程采用900平方毫米导线,节能环保效果明显,抗自然灾害能力强,可进一步促进电力技术创新和行业技术升级。与传统的630平方毫米截面导线相比,锦苏特高压直流线路应用900平方毫米截面导线,按照年运行3000小时计算,每年每千米线路可节电4.32万千瓦时,全线一年将创造直接效益4000多万元。按供电煤耗360克标煤/千瓦时计算,全线一年将减少标煤消耗7.735万吨,减排二氧化碳约20.12万吨。而在抵御自然灾害方面,大截面导线的大风水平荷载降低约10%,15毫米覆冰垂直荷载减小约7%。3.三峡mdash;上海plusmn;500千伏直流输电工程线路全长1048.6千米,输送容量300万千瓦,若按中强度全铝合金导线替代普通导线计算,正常功率下,如果一年的输送小时数为4000小时,可节约电能7.98万千瓦时/千米,全线每年可节电8372万千瓦时。
CCTV系统(CLOSED-CIRCUIT TV STSTEM),能够实时形象、真实地反映被监视控制的对象,使得各级部门和有关人员及时获得大量丰富的信息,极大地提高了管理效率和测控的自动化水平。一套技术先进、质量可靠、运行稳定的闭路电视监控系统越来越受到人们的重视,并成为衡量管理是否具规模及现代化上档次的一个重要依据。
对架空线路进行巡视检查,是对架空线路进行运行维护的基本内容之一。通过巡视检查可及时发现缺陷,以便采取防范措施,保障线路的安全运行。通常,巡线工巡视架空线路时应做到“九查”。 一查杆塔。检查杆塔有无倒塌、倾斜、变形、腐朽、损坏及基础有无开裂情况,铁构件有无弯曲、松动、歪斜或锈蚀。查看杆塔铁螺栓或铁螺丝帽的丝长度是否有不够、螺丝松扣、绑线折断和松弛等情况。查看杆塔上是否有鸟巢及其他物体。 二查横担和金具。检查横担和金具是否移位、固定是否牢固、焊缝是否开裂、是否缺少螺母等。 三查沿线情况。检查沿线路的地面是否堆放有易燃、易爆或强烈腐蚀性物质,沿线路附近有无违章建筑物,有无在雷雨或大风天气可能对线路造成危害的建筑物及其他设施;检查杆塔上是否架设其他电力线、通信线、广播线,以及安装广播喇叭等;查看线路有无擅自接用电器设备。 四查线路。检查导线和避雷线有无断股、背花、腐蚀、外力破坏伤痕等;查看线间、对地面以及邻近建筑物或邻近树木距离、弧垂等是否符合要求,三相导线弧垂有无不平衡现象;查看导线接头是否良好、有无过热、严重氧化、腐蚀痕迹。 五查绝缘子。检查绝缘子有无破裂、脏污、烧伤及闪络痕迹;检查绝缘子串偏斜程度、绝缘子铁件损坏情况。 六查防雷装置。检查保护间隙大小是否合格,辅助间隙是否完好。检查管型避雷器外部间隙是否发生变动,接地线是否完好。检查阀型避雷器瓷套有无破裂、脏污、烧伤及闪络痕迹,密封是否良好。检查避雷器引下线是否完好、接地体有无被水冲刷而外露,接地引下线与接地体连接是否牢固。 七查拉线。检查拉线是否有锈蚀、松弛、断股和各股铁线受力不均问题。拉线桩、保护桩是否有腐朽损坏。拉线地锚是否松动、缺土及土灌下陷。拉线棒、楔形线夹、UT形线夹、拉线抱箍等金具是否有锈蚀,UT形线夹的螺帽是否有丢失,花兰螺丝的止动装置是否良好。拉线在木杆捆绑处有无勒入木杆现象。 八查杆上开关设备。检查开关设备安装是否牢固,有无变形、破损及放电痕迹,操作机构是否完好,各部引线之间及对地间距是否符合规定。 九查交叉跨越点。查看有无新增交叉跨越点,跨越距离是否满足安全要求,原交叉跨越点是否危及线路安全运行。防护措施是否完善。
首页140141142143144145146147148尾页

服务热线

电话:18861778700

QQ在线服务

QQ:3488196402


Copyright 远东买卖宝网络科技有限公司.All Rights Researved. 苏ICP备20037087号-2 未经书面授权,禁止转载使用。